Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Smallarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Small
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Small
Article . 2020
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Targeting‐Mediated Mild‐Temperature Photothermal Therapy with a Smart Albumin‐Based Nanodrug

Authors: Ge Gao; Yao‐Wen Jiang; Wei Sun; Yuxin Guo; Hao‐Ran Jia; Xin‐Wang Yu; Guang‐Yu Pan; +1 Authors

Molecular Targeting‐Mediated Mild‐Temperature Photothermal Therapy with a Smart Albumin‐Based Nanodrug

Abstract

AbstractPhotothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin‐based tumor microenvironment‐responsive nanoagent is designed via the self‐assembly of human serum albumin (HSA), dc‐IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting‐mediated mild‐temperature PTT. The formed HSA/dc‐IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near‐infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia‐induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc‐IR825/GA NPs show pH‐responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild‐temperature PTT and chemotherapy. Taken together, the NIR‐activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild‐temperature PTT‐based combination strategies.

Related Organizations
Keywords

Temperature, Hyperthermia, Induced, Phototherapy, Combined Modality Therapy, Endocytosis, Mice, A549 Cells, Albumins, Neoplasms, Animals, Humans, Nanoparticles, Tissue Distribution, Molecular Targeted Therapy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 0.1%
Top 10%
Top 0.1%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!