Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2004
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis

Authors: Koh, Tong-Wey; Verstreken, Patrik; Bellen, Hugo J;

Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis

Abstract

We describe the isolation of mutations in dynamin-associated protein 160 kDa (dap160), the Drosophila homolog of intersectin, a putative adaptor for proteins involved in endocytosis, cytoskeletal regulation, and signaling. We show that partial loss-of-function mutants display temperature-sensitive (ts) paralysis, whereas null mutants show ts defects in endocytosis. Loss-of-function mutants exhibit bouton overgrowth at larval neuromuscular junctions (NMJs), but evoked neurotransmission is normal. Mutant NMJs show a mild endocytic defect at 22 degrees C, which is strongly enhanced at 34 degrees C. The levels of dynamin, synaptojanin and endophilin are severely reduced in dap160 mutant NMJs, suggesting that Dap160 serves to stabilize an endocytic macromolecular complex. Electron microscopy reveals fewer vesicles, aberrant large vesicles, and an accumulation of endocytic intermediates at active and periactive zones in mutant terminals. Our data suggest that Dap160, like dynamin, is involved in synaptic vesicle retrieval at active and periactive zones.

Related Organizations
Keywords

Neuroscience(all), Neuropeptides, Neuromuscular Junction, Vesicular Transport Proteins, Membrane Proteins, Motor Activity, Endocytosis, Adaptor Proteins, Vesicular Transport, Motor Skills, Larva, Mutation, Synapses, Animals, Drosophila Proteins, Drosophila, Thermosensing, Synaptic Vesicles, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    227
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
227
Top 1%
Top 10%
Top 1%
hybrid