
Ultrasonic melt processing attracts since the 1930 a lot of interest both from academic researchers and industry. In the last 10 years the interest to ultrasonic melt processing grew with regard to understanding the underlying mechanisms of previously established effects, developing numerical models of ultrasonic cavitation and the development of nanocomposite technology. This review paper summarises the mechanisms involved in the ultrasonic melt processing, including cavitation, flows, nucleation, activation, fragmentation and their consequences for degassing, structure refinement and particle dispersion. Some typical mistakes made by researchers in performing experiments and in interpretation of the results are discussed. New advanced methods of studying ultrasonic treatment and phenomena are considered. The paper also gives an outlook to future developments and challenges. This paper is part of a Themed Issue on Aluminium-based materials: processing, microstructure, properties, and recycling.
ультразвуковая обработка, алюминиевые расплавы, кавитационная активность
ультразвуковая обработка, алюминиевые расплавы, кавитационная активность
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
