Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quality Enhancement of MPEG-H 3DA Binaural Rendering Using a Spectral Compensation Technique

Authors: Hyeongi Moon; Young-cheol Park;

Quality Enhancement of MPEG-H 3DA Binaural Rendering Using a Spectral Compensation Technique

Abstract

The latest MPEG standard, MPEG-H 3D Audio, employs the virtual loudspeaker rendering (VLR) technique to support virtual reality (VR) and augmented reality (AR). During the rendering, the binaural downmixing of channel signals often induces the so-called comb filter effect, an undesirable spectral artifact, due to the phase difference between the binaural filters. In this paper, we propose an efficient algorithm that can mitigate such spectral artifacts. The proposed algorithm performs spectral compensation in both the panning gain and downmix signal domains depending on the frequency range. In the low-frequency bands where a band has a wider bandwidth than the critical-frequency scale, panning gains are directly compensated. In the high-frequency bands, where a band has a narrower bandwidth than the critical-frequency scale, a signal compensation similar to the active downmix is performed. As a result, the proposed algorithm optimizes the performance and the complexity within MPEG-H 3DA framework. By implementing the algorithm on MPEG-H 3DA BR, we verify that the additional computation complexity is minor. We also show that the proposed algorithm improves the subjective quality of MPEG-H 3DA BR significantly.

Related Organizations
Keywords

MPEG-H 3D Audio; binaural rendering; amplitude panning; active downmix

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold