Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Genetic E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Genetic Engineering and Biotechnology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In silico multi-epitope Bunyumwera virus vaccine to target virus nucleocapsid N protein

Authors: Kanaka Durga Devi Nelluri; Manne Anupama Ammulu; M. Lakshmi Durga; Melika Sravani; Vemuri Praveen Kumar; Sudhakar Poda;

In silico multi-epitope Bunyumwera virus vaccine to target virus nucleocapsid N protein

Abstract

Bunyumwera virus can cause 82% mortality in humans currently with no vaccine or drugs for treatment. We described an in silico multi-epitope vaccine targeting Bunyumwera virus nucleocapsid N-protein and predicted B and T cell epitopes for immunogenicity, allergenicity, toxicity, and conservancy. For creating the most potent immunological response possible, docking epitopes with HLA alleles are chosen to screen them. The 3D vaccination was docked with the Toll-like receptor-8 using molecular dynamic simulations. To ensure production efficiency, the vaccine sequence was further cloned in silico in a plasmid pIB2 vector. For efficacy and safety, results must be supported in vitro and in vivo.The vaccine was cloned to enable expression and translation in a plasmid vector pIB2. It was expected to be antigenic, non-allergenic, and have a high binding affinity with TLR-8 in silico cloning. This multi-epitope vaccination may stimulate both innate and adaptive immunity.The vaccine developed in this work was based on the nucleocapsid N-protein of the Bunyumwera virus and was created using a reverse vaccinology method. Further experimental validation is required to assess the vaccine's therapeutic effectiveness and immunogenicity.

Keywords

Multi-epitope, Research, Genetics, Nucleocaspid N-Protein, QH426-470, Bunyumwera virus, Vaccine design, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold