Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DOCKING AND MD SIMULATIONS OF THE INTERACTION OF THE POTASSIUM-SPARING DIURETIC AGENT AMILORIDE WITH THE hASIC1a CHANNEL USING A HOMOLOGY MODEL

Authors: FRANCESCO PIETRA;

DOCKING AND MD SIMULATIONS OF THE INTERACTION OF THE POTASSIUM-SPARING DIURETIC AGENT AMILORIDE WITH THE hASIC1a CHANNEL USING A HOMOLOGY MODEL

Abstract

The interaction of the K+ -sparing agent amiloride — a synthetic chlorinated pyrimidine derivative — with the hASIC1a ion channel is investigated here along homology modeling of the pore region (using the crystal structure of the cASIC1 channel as a template and the known sequence of hASIC1a), automated docking (using the NMR solution structure of amiloride and its conjugated acid, refined by computations), and molecular dynamics simulations. This represents the first modeling and computational chemistry of the pore region of ASIC/DEG/ENaCs/FaNaCh channels. The results agree with the putative amiloride binding site for alphaENaC channel chimeras once the amiloride free base is considered, while its conjugated acid — in contrast with literature beliefs — is poorly scored on a nearby protein pocket. Different protonation conditions of the pore region are irrelevant because histidine residues are far from the binding sites. Mapping the amino acids of the homology model closest to amiloride can have heuristic value in stimulating in silico search of new pore-blocking agents, experimental studies of ASIC channels themselves, and development of code for constant-pH MD simulations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!