Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1980 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase.

Authors: S G Bonitz; B E Thalenfeld; Alexander Tzagoloff; Giuseppe Macino; Gloria M. Coruzzi;

Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase.

Abstract

the oxi3 locus of yeast mitochondrial DNA has been sequenced in Saccharomyces cerevisiae D273-10B. The sequence was obtained from the mitochondrial genomes of a series of cytoplasmic "petite" mutants selected for the retention of genetic markers in the oxi3 locus. The oxi3 locus has been ascertained to code for Subunit 1 of cytochrome oxidase. The Subunit 1 gene is 9,979 nucleotides long, consisting of seven to eight exons that account for only 16% of the gene sequence. The coding sequences have been identified on the basis of protein sequence homology with Subunit 1 of human cytochrome oxidase. The yeast Subunit 1 is 510 amino acid residues long and has a molecular weight of 56,000. In addition to the exon sequences, the Subunit I gene contains six to seven introns. The first four introns have long reading frames that are continuous with the exon coding sequences. These reading frames are potentially capable of coding for basic proteins with molecular weights ranging from 30,000 to 80,000. The first two introns of the gene have a sequence homology of 50%, while the reading frame of the fourth intron is 70% homologous with an intron of the apocytochrome b gene. At least five stable transcripts have been found by Northern blot hybridizations with single-stranded DNA probes containing either exon or intron sequences. A 1.9-kolobase transcript hybridizes only with probes from the exon regions of the gene. This RNA species has been tentatively identified as the fully processed messenger of Subunit 1. Other transcripts are detected with intron probes. Three transcripts with sizes of 2.5, 2.4, and 0.85 kilobases appear to be stable excision products from the first, second, and fifth introns.

Keywords

Base Sequence, RNA, Fungal, DNA Restriction Enzymes, Intracellular Membranes, Saccharomyces cerevisiae, DNA, Mitochondrial, Mitochondria, Electron Transport Complex IV, Genes, Genetic Code, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    450
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
450
Top 10%
Top 0.1%
Top 0.1%
gold