Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Neurob...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Neurobiology
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MafA transcription factor identifies the early ret‐expressing sensory neurons

Authors: Laure, Lecoin; Nathalie, Rocques; Warif, El-Yakoubi; Sarrah, Ben Achour; Magalie, Larcher; Celio, Pouponnot; Alain, Eychène;

MafA transcription factor identifies the early ret‐expressing sensory neurons

Abstract

AbstractDorsal root ganglia proceed from the coalescence of cell bodies of sensory neurons, which have migrated dorsoventrally from the delaminating neural crest. They are composed of different neuronal subtypes with specific sensory functions, including nociception, thermal sensation, proprioception, and mechanosensation. In contrast to proprioceptors and thermonociceptors, little is known about the molecular mechanisms governing the early commitment and later differentiation into mechanosensitive neurons. This is mainly due to the absence of specific molecular markers for this particular cell type. Using knockout mice, we identified the bZIP transcription factor MafA as the first specific marker of a subpopulation of “early c‐ret” positive neurons characterized by medium‐to‐large diameters. This marker will allow further functional characterization of these neurons. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:485–497, 2010

Keywords

Genetic Markers, Mice, Knockout, Maf Transcription Factors, Large, Sensory Receptor Cells, Proto-Oncogene Proteins c-ret, Gene Expression Regulation, Developmental, Cell Differentiation, Mice, Transgenic, Mice, Inbred C57BL, Mice, Mutagenesis, Insertional, Neural Crest, Ganglia, Spinal, Animals, Cell Lineage, Mechanoreceptors, Cell Size

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!