Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PTEN-deficient cancers depend on PIK3CB

Authors: Susan, Wee; Dmitri, Wiederschain; Sauveur-Michel, Maira; Alice, Loo; Christine, Miller; Rosalie, deBeaumont; Frank, Stegmeier; +2 Authors

PTEN-deficient cancers depend on PIK3CB

Abstract

Deregulation of the PI3K signaling pathway is observed in many human cancers and occurs most frequently through loss of PTEN phosphatase tumor suppressor function or through somatic activating mutations in the Class IA PI3K, PIK3CA . Tumors harboring activated p110α, the protein product of PIK3CA , require p110α activity for growth and survival and hence are expected to be responsive to inhibitors of its lipid kinase activity. Whether PTEN-deficient cancers similarly depend on p110α activity to sustain activation of the PI3K pathway has been unclear. In this study, we used a single-vector lentiviral inducible shRNA system to selectively inactivate the three Class IA PI3Ks, PIK3CA , PIK3CB , and PIK3CD , to determine which PI3K isoforms are responsible for driving the abnormal proliferation of PTEN-deficient cancers. Down-regulation of PIK3CA in colorectal cancer cells harboring mutations in PIK3CA inhibited downstream PI3K signaling and cell growth. Surprisingly, PIK3CA depletion affected neither PI3K signaling nor cell growth in 3 PTEN-deficient cancer cell lines. In contrast, down-regulation of the PIK3CB isoform, which encodes p110β, resulted in pathway inactivation and subsequent inhibition of growth in both cell-based and in vivo settings. This essential function of PIK3CB in PTEN-deficient cancer cells required its lipid kinase activity. Our findings demonstrate that although p110α activation is required to sustain the proliferation of established PIK3CA -mutant tumors, PTEN-deficient tumors are dependent instead on p110β signaling. This unexpected finding demonstrates the need to tailor therapeutic approaches to the genetic basis of PI3K pathway activation to achieve optimal treatment response.

Keywords

Male, Cell Survival, Class I Phosphatidylinositol 3-Kinases, Transplantation, Heterologous, PTEN Phosphohydrolase, Down-Regulation, Mice, Nude, Prostatic Neoplasms, Phosphoproteins, Mice, Phosphatidylinositol 3-Kinases, Cell Line, Tumor, Neoplasms, Colonic Neoplasms, Mutation, Animals, Humans, Proto-Oncogene Proteins c-akt, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    516
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
516
Top 1%
Top 1%
Top 1%
bronze