Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation Research
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isoform Transitions of the Myosin Binding Protein C Family in Developing Human and Mouse Muscles

Lack of Isoform Transcomplementation in Cardiac Muscle
Authors: Gautel, Mathias; Fürst, Dieter Oswald; Cocco, Alessandra; Schiaffino, Stefano;

Isoform Transitions of the Myosin Binding Protein C Family in Developing Human and Mouse Muscles

Abstract

Abstract —Mutations in the gene for the cardiac isoform of myosin binding protein C (MyBP-C) have been identified as the cause of chromosome 11–associated autosomal-dominant familial hypertrophic cardiomyopathy (FHC). Most mutations produce a truncated polypeptide that lacks the sarcomeric binding region. We have now investigated the expression pattern of the cardiac and skeletal isoforms of cMyBP-C in mice and humans by in situ hybridization and immunofluorescence microscopy using specific antibodies and probes. We demonstrate that the cardiac isoform is expressed only in cardiac muscle throughout development. The slow and fast isoforms of MyBP-C remain specific for skeletal muscle, where they can be coexpressed. Immunological evidence also suggests that an embryonic isoform of MyBP-C precedes the expression of slow MyBP-C in developing skeletal muscle. This suggests that transcomplementation of MyBP-C isoforms is possible in skeletal but not cardiac muscle.

Keywords

Adult, Male, Aging, Mice, Inbred BALB C, Myocardium, Genetic Complementation Test, Gene Expression, Heart, Mice, Antibody Specificity, Animals, Humans, Female, Carrier Proteins, Muscle, Skeletal, Institut für Biochemie und Biologie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
bronze