
arXiv: 1902.02064
We propose a thick-restart block Lanczos method, which is an extension of the thick-restart Lanczos method with the block algorithm, as an eigensolver of the large-scale shell-model calculations. This method has two advantages over the conventional Lanczos method: the precise computations of the near-degenerate eigenvalues, and the efficient computations for obtaining a large number of eigenvalues. These features are quite advantageous to compute highly excited states where the eigenvalue density is rather high. A shell-model code, named KSHELL, equipped with this method was developed for massively parallel computations, and it enables us to reveal nuclear statistical properties which are intensively investigated by recent experimental facilities. We describe the algorithm and performance of the KSHELL code and demonstrate that the present method outperforms the conventional Lanczos method.
14 pages, 13 figures
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 309 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
