Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Essential genes for myoblast fusion in Drosophila embryogenesis

Authors: Renate Renkawitz-Pohl; Achim Paululat; Anne Holz;

Essential genes for myoblast fusion in Drosophila embryogenesis

Abstract

In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. Molecular analysis of two of these genes revealed the importance of cytoplasmic components. One of these, Myoblast city, is expressed in several tissues and is homologous to the mammalian protein DOCK180. Myoblast city is presumably involved in cell recognition and cell adhesion. Blown fuse, the second cytoplasmic component, is selectively expressed in the mesoderm and essential in order to proceed from the prefusion complex to electron-dense plaques at opposed membranes between adjacent myoblasts. The rolling stone gene is transiently expressed during myoblast fusion. The Rost protein is located in the membrane and thus might be a key component for cell recognition. The molecular characterization of further genes relevant for fusion such as singles bar and sticks and stones will help to elucidate the mechanism of myoblast fusion in Drosophila.

Related Organizations
Keywords

Male, Embryology, MEF2 Transcription Factors, Muscles, Muscle Proteins, Intracellular Membranes, Models, Biological, DNA-Binding Proteins, Cytoskeletal Proteins, Myogenic Regulatory Factors, GTP-Binding Proteins, Mutagenesis, Cell Adhesion, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Female, Spermatogenesis, Developmental Biology, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
hybrid