
Abstract In this work MWNT/polypyrrole nanocomposites were synthesized and investigated as electrode materials for supercapasitor application. The MWNT were synthesized by CCVD-method and precipitated as buckypaper film (NTBP). The polypyrrole was precipitated on the NTBP surface by chemical (sample NTBP_PPy_Chem) and electrochemical (sample NTBP_PPy_Elect) polymerization. The morphology and functional composition of individual and hybrid materials were investigated by microscopic and spectroscopic methods. It was obtained that the deposition method and presence of NTBP affects the polymer morphology. It was shown that PPy chemical deposition leads to the precipitation of a large amount of an amorphous polymer on a buckypaper surface. At the same time electrochemical deposition method promotes the synthesis of uniform polymer layers. In the second case, the mass of the precipitated polymer is smaller. It was found that both deposition methods are suitable for the polypyrrole deposition and can increase the buckypaper capacity almost twice. The material long cycling showed that the NTBP_PPy_Elect sample has the greatest stability. Thus, in this study, the relationship between morphology, functional composition and electrochemical properties of materials was studied. It was shown that the synthesis method allows controlling the morphology and/or functional composition of the materials. Also it was demonstrated that the synthesized structures are promising for use as supercapacitor electrodes due to the high specific capacitance and stability.
Supercapacitor, CCVD synthesis, TEM, Polypyrrole, MWCNT buckypaper, ta215
Supercapacitor, CCVD synthesis, TEM, Polypyrrole, MWCNT buckypaper, ta215
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
