Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Microbiology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Microbiology and Biotechnology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality

Authors: Casal, Alejo; Gizzi, Fernán Oscar; Figueroa, Sol Agostina; Petitti, Tomás Denis; Ferragutti, Facundo; Gaido, Jimena; Manno, Mariano Alberto Torres; +5 Authors

Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality

Abstract

Abstract Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. Key points • Rhizosphere Bacillaceae strains show dual plant growth promotion and biocontrol • B. velezensis ZAV-W70 and P. megaterium ZAV-W64 increase wheat yield • ZAV-W64 increases bread-making quality including total gluten and alveograph W

Keywords

Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid