Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurobiology of Aging
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abnormalities of functional cortical source connectivity of resting-state electroencephalographic alpha rhythms are similar in patients with mild cognitive impairment due to Alzheimer's and Lewy body diseases

Authors: Babiloni, Claudio; Del Percio, Claudio; Pascarelli, Maria Teresa; Lizio, Roberta; Noce, Giuseppe; Lopez, Susanna; Rizzo, Marco; +35 Authors

Abnormalities of functional cortical source connectivity of resting-state electroencephalographic alpha rhythms are similar in patients with mild cognitive impairment due to Alzheimer's and Lewy body diseases

Abstract

Previous evidence has shown different resting-state eyes-closed electroencephalographic delta (<4 Hz) and alpha (8-10.5 Hz) source connectivity in subjects with dementia due to Alzheimer's (ADD) and Lewy body (DLB) diseases. The present study tested if the same differences may be observed in the prodromal stages of mild cognitive impairment (MCI). Here, clinical and resting-state eyes-closed electroencephalographic data in age-, gender-, and education-matched 30 ADMCI, 23 DLBMCI, and 30 healthy elderly (Nold) subjects were available in our international archive. Mini-Mental State Evaluation (MMSE) score was matched in the ADMCI and DLBMCI groups. The eLORETA freeware estimated delta and alpha source connectivity by the tool called lagged linear connectivity (LLC). Area under receiver operating characteristic curve (AUROCC) indexed the classification accuracy among individuals. Results showed that widespread interhemispheric and intrahemispheric LLC solutions in alpha sources were abnormally lower in both MCI groups compared with the Nold group, but with no differences were found between the 2 MCI groups. AUROCCs of LLC solutions in alpha sources exhibited significant accuracies (0.72-0.75) in the discrimination of Nold versus ADMCI-DLBMCI individuals, but not between the 2 MCI groups. These findings disclose similar abnormalities in ADMCI and DLBMCI patients as revealed by alpha source connectivity. It can be speculated that source connectivity mostly reflects common cholinergic impairment in prodromal state of both AD and DLB, before a substantial dopaminergic derangement in the dementia stage of DLB.

Countries
Turkey, Turkey, Italy, United Kingdom, Italy, Switzerland, Italy, Italy
Keywords

Lewy Body Disease, Male, Mild cognitive impairment due to Alzheimer's disease (ADMCI), Rest, Alzheimer's Disease (ADMCI), Functional brain connectivity, Mild cognitive impairment due to Alzheimer's disease (ADMCI), Mild cognitive impairment due to dementia with Lewy body (DLBMCI), Resting state EEG rhythms, Neuroscience (all), Aging, Neurology (clinical), Developmental Biology, Geriatrics and Gerontology, Mild Cognitive Impairment Due To Dementia With Lewy Body (DLBMCI), 618, 618.97, Functional brain connectivity; Mild cognitive impairment due to Alzheimer's disease (ADMCI); Mild cognitive impairment due to dementia with Lewy body (DLBMCI); Resting state EEG rhythms, Alzheimer Disease, 616, Mild Cognitive Impairment Due To, Humans, Functional Brain Connectivity, Resting State EEG Rhythms, Cognitive Dysfunction, Resting state EEG rhythms, Aged, Cerebral Cortex, Functional brain connectivity, Mild cognitive impairment due to dementia with Lewy body (DLBMCI), Alpha Rhythm, Female, functional brain connectivity; mild cognitive impairment due to Alzheimer's disease (ADMCI); mild cognitive impairment due to dementia with Lewy body (DLBMCI); resting state EEG rhythms; neuroscience (all); aging; neurology (clinical); developmental biology; geriatrics and gerontology, ddc: ddc:618.97

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!