Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biopolymersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biopolymers
Article . 1975 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Biopolymers
Article . 1975
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infrared spectroscopy of collagen and collagen‐like polypeptides

Authors: B B, Doyle; E G, Bendit; E R, Blout;

Infrared spectroscopy of collagen and collagen‐like polypeptides

Abstract

AbstractThe set of synthetic polytripeptides and polyhexapeptides which can adopt a triple‐helical form constitute a good model system for investigating collagen structure. Here we consider previous and new infrared spectroscopic studies on collagen and present the infrared spectra of a number of polymers with collagen‐like features.The amide A band position for all triple‐helical polypeptides is higher than that observed for most proteins and polypeptides, and this high frequency appears to be related to the degree of supercoiling of the triple helix. It is possible that with increased supercoiling of the three chains the angles between the groups involved in the intramolecular hydrogen bonds become less favorable, or these bonds may become unusually long.The frequency of the amide I band varies considerably for triple‐helical polypeptides with different amino acid sequences, and often minor bands are observed. This finding contrasts with the observations for polypeptides in a pleated sheet or α‐helical form, where the same amide I frequency is observed regardless of the amino acid composition. An explanation for this variation is proposed in terms of the hydrogen bonding properties of imino acids.Significant spectral changes in the amide I region are observed on hydration in the spectra of some triple‐helical polypeptides, but corresponding changes have not been found in the collagens examined.

Keywords

Chemistry, Chemical Phenomena, Models, Chemical, Spectrophotometry, Infrared, Molecular Conformation, Collagen, Imides, Peptides, Amides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    523
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
523
Top 0.1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!