Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gα12 Specifically Regulates COX-2 Induction by Sphingosine 1-Phosphate

Authors: Sung Hwan Ki; Sang Geon Kim; Min Jung Choi; Chang Ho Lee;

Gα12 Specifically Regulates COX-2 Induction by Sphingosine 1-Phosphate

Abstract

Cyclooxygenase-2 (COX-2) plays a critical role in vasodilatation and local inflammatory responses during platelet aggregation and thrombosis. Sphingosine 1-phosphate (S1P), a sphingolipid released from activated platelets, stimulates COX-2 induction and activates G-protein-coupled receptors coupled to Galpha family members. In this study, we investigated whether Galpha(12) family regulates COX-2 induction by S1P and investigated the molecular basis of this COX-2 regulation. Gene knock-out and chemical inhibitor experiments revealed that the S1P induction of COX-2 requires Galpha(12) but not Galpha(13), Galpha(q), or Galpha(i/o). The specific role of Galpha(12) in COX-2 induction by S1P was verified by promoter luciferase assay, Galpha(12) transfection, and knockdown experiments. Experiments using siRNAs specifically directed against S1P(1-5) showed that S1P(1), S1P(3), and S1P(5) are necessary for the full activation of COX-2 induction. Gel shift, immunocytochemistry, chromatin immunoprecipitation, and NF-kappaB site mutation analyses revealed the role of NF-kappaBin COX-2 gene transcription by S1P. Galpha(12) deficiency did not affect S1P-mediated IkappaBalpha phosphorylation but abrogated IkappaBalpha ubiquitination and degradation. Moreover, the inhibition of S1P activation of JNK abolished IkappaBalpha ubiquitination. Consistently, JNK transfection restored the ability of S1P to degrade IkappaBalpha during Galpha(12) deficiency. S1P injection induced COX-2 in the lungs and livers of mice and increased plasma prostaglandin E(2), and these effects were prevented by Galpha(12) deficiency. Our data indicate that, of the Galpha proteins coupled to S1P receptors, Galpha(12) specifically regulates NF-kappaB-mediated COX-2 induction by S1P downstream of S1P(1), S1P(3), and S1P(5), in a process mediated by the JNK-dependent ubiquitination and degradation of IkappaBalpha.

Related Organizations
Keywords

Ubiquitin, Active Transport, Cell Nucleus, NF-kappa B, GTP-Binding Protein alpha Subunits, G12-G13, Models, Biological, Chromatin, Dinoprostone, Cell Line, Mice, Gene Expression Regulation, NF-KappaB Inhibitor alpha, Cyclooxygenase 2, Sphingosine, Animals, I-kappa B Proteins, Mitogen-Activated Protein Kinase 8, Lysophospholipids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
gold