Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ca2+/calmodulin kinase II–dependent regulation of βIV-spectrin modulates cardiac fibroblast gene expression, proliferation, and contractility

Authors: Nehal J. Patel; Nehal J. Patel; Thomas J. Hund; Thomas J. Hund; Sathya D. Unudurthi; Peter J. Mohler; Jane Yu; +5 Authors

Ca2+/calmodulin kinase II–dependent regulation of βIV-spectrin modulates cardiac fibroblast gene expression, proliferation, and contractility

Abstract

Fibrosis is a pronounced feature of heart disease and the result of dysregulated activation of resident cardiac fibroblasts (CFs). Recent work identified stress-induced degradation of the cytoskeletal protein βIV-spectrin as an important step in CF activation and cardiac fibrosis. Furthermore, loss of βIV-spectrin was found to depend on Ca2+/calmodulin-dependent kinase II (CaMKII). Therefore, we sought to determine the mechanism for CaMKII-dependent regulation of βIV-spectrin and CF activity. Computational screening and MS revealed a critical serine residue (S2250 in mouse and S2254 in human) in βIV-spectrin phosphorylated by CaMKII. Disruption of βIV-spectrin/CaMKII interaction or alanine substitution of βIV-spectrin Ser2250 (βIV-S2254A) prevented CaMKII-induced degradation, whereas a phosphomimetic construct (βIV-spectrin with glutamic acid substitution at serine 2254 [βIV-S2254E]) showed accelerated degradation in the absence of CaMKII. To assess the physiological significance of this phosphorylation event, we expressed exogenous βIV-S2254A and βIV-S2254E constructs in βIV-spectrin-deficient CFs, which have increased proliferation and fibrotic gene expression compared with WT CFs. βIV-S2254A but not βIV-S2254E normalized CF proliferation, gene expression, and contractility. Pathophysiological targeting of βIV-spectrin phosphorylation and subsequent degradation was identified in CFs activated with the profibrotic ligand angiotensin II, resulting in increased proliferation and signal transducer and activation of transcription 3 nuclear accumulation. While therapeutic delivery of exogenous WT βIV-spectrin partially reversed these trends, βIV-S2254A completely negated increased CF proliferation and signal transducer and activation of transcription 3 translocation. Moreover, we observed βIV-spectrin phosphorylation and associated loss in total protein within human heart tissue following heart failure. Together, these data illustrate a considerable role for the βIV-spectrin/CaMKII interaction in activating profibrotic signaling.

Keywords

Male, Myocardium, Spectrin, Endomyocardial Fibrosis, Myocardial Contraction, Mice, Inbred C57BL, Mice, Amino Acid Substitution, COS Cells, Chlorocebus aethiops, Animals, Female, Phosphorylation, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Myofibroblasts, Cells, Cultured, Research Article, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold