
A hybrid finite element discrete mesoscopic approach is proposed to model the forming of composite parts using a unidirectional glass prepreg non-crimp fabric (NCF). The tensile behavior of the fabric is represented using 1-D beam elements, and the shearing behavior is captured using 2-D shell elements. The material is characterized using tensile and shear frame tests. These properties are then incorporated into an ABAQUS/Explicit finite element model via user-defined material subroutines. The shear frame characterization test is simulated using a finite element model of the fabric, and the finite element results are compared to experimental data as a validation of the methodology. The thermostamping of a double-dome geometry, which has been used in an international benchmarking program, is modeled as a demonstration of the capabilities of the proposed methodology.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
