Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Classification Refactoring Framework Using Hopfield Neural Network for Sustainable Software Development

Authors: Abdullah Almogahed; Hairulnizam Mahdin; Yeong Hyeon Gu; Mohammed A. Al-Masni; Shehab Abdulhabib Alzaeemi; Mazni Omar; Abdulwadood Alawadhi; +3 Authors

Multi-Classification Refactoring Framework Using Hopfield Neural Network for Sustainable Software Development

Abstract

Adopting high-quality source code is the ultimate way through which software evolution can be ensured as sustainable. Continuous refactoring in complex software systems ensures longevity and increases architecture knowledge sustainability. However, decision-making about refactoring is a challenge because the benefits of refactoring are vague and very difficult for the developers to quantify, as different refactoring strategies have different effects on quality attributes. No research has developed a multi-classification refactoring framework using artificial neural networks (ANN), specifically hopfield neural networks (HNN), to classify refactoring strategies and improve external software quality and sustainability. Therefore, this study proposes a multi-classification refactoring framework using HNN that classifies refactoring strategies by their impact on external quality attributes. Five stages have been conducted to perform this study, including selecting case studies, identifying the external quality attributes, identifying the most commonly used refactoring strategies in practice, conducting the experiments, and conducting the classification process using HNN. The proposed framework categorizes the refactoring strategies into three categories (positive, negative, and ineffective). By providing clear classifications and descriptions of each strategy, the proposed framework helps developers make informed decisions about how to improve the design and structure of their code. It helps developers mitigate risks associated with code changes by providing guidance on which strategies are likely to yield positive results for specific quality attributes. The proposed multi-classification refactoring framework enhances software sustainability by enhancing critical quality attributes. It supports maintainability, adaptability, and long-term viability, helping to ensure that the software systems remain relevant, efficient, and valuable over time.

Keywords

machine learning, Refactoring, multi-classification, Electrical engineering. Electronics. Nuclear engineering, refactoring strategies, software quality, sustainability, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities