Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of the regularities of the soil punching process by the working body with the asymetric tip

Authors: Svyatoslav Kravets; Vladimir Suponyev; Valery Shevchenko; Alexander Yefymenko; Vitaliy Ragulin;

Determination of the regularities of the soil punching process by the working body with the asymetric tip

Abstract

The presence of analytical dependencies describing the process of static soil puncture by a working body with a conical asymmetric tip is necessary to create installations with the ability to control the trajectory of the soil puncture. The paper considers the features of the process of interaction of an asymmetric conical tip with the ground. Analytical relationships were obtained to determine its reactions during a static puncture, the deviation of the head trajectory from a straight line, to determine the size of the soil compaction zone and the magnitude of the destructive force that acts on adjacent communications and other underground objects. It was found that with an increase in the value of the displacement of the top of the cone, for example, from its axis from 0.02 m to 0.08 m with a borehole diameter of 0.2 m, the value of soil resistance increases almost four times. The greatest resistance is achieved when piercing a hard sandy sand. It was found that with an increase in the displacement of the tip of the tip cone, the deviation of the trajectory increases. The piercing head achieves the greatest deviation from the straight trajectory of movement with a sharper cone and a greater asymmetric deviation of its top, and, for example, in hard sandy loam can be up to 0.17 m with a span of 10 m. It was found that the size of the soil destruction zone will be almost 1.8 times larger than the tip in the form of a symmetrical cone and reaches from 8 to 12 borehole diameters, depending on the type of soil. The maximum pressure on adjacent objects can reach from 0.06 MPa in hard-plastic clay to 0.09 MPa in hard sandy loam. The calculated dependences obtained for determining the power and technological parameters depending on the geometric dimensions of the asymmetric tip of the working body can be used to create installations with a controlled static puncture for use in the most common soil conditions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 2
  • 7
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
7
2
gold