Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Psychological stress induces chemoresistance in breast cancer by upregulating mdr1

Authors: Fengxi Su; Nengtai Ouyang; Weijuan Jia; Xuexia Ma; Huanbin Xu; Nengyong Ouyang; Erwei Song; +3 Authors

Psychological stress induces chemoresistance in breast cancer by upregulating mdr1

Abstract

Psychological distress reduces the efficacy of chemotherapy in breast cancer patients. The mechanism may be related to the altered neuronal or hormonal secretions during stress. Here, we reported that adrenaline, a hormone mediating the biological activities of stress, upregulates mdr1 gene expression in MCF-7 breast cancer cells via alpha(2)-adrenergic receptors in a dose-dependent manner. Mdr1 upregulation can be specifically inhibited by pretreatment with mdr1-siRNA. Consequently, adrenergic stimulation enhances the pump function of P-glycoprotein and confers resistance of MCF-7 cells to paclitaxel. In vivo, restraint stress increases mdr1 gene expression in the MCF-7 cancers that are inoculated subcutaneously into the SCID mice and provokes resistance to doxorubicin in the implanted tumors. The effect can be blocked by injection of yohimbine, an alpha(2)-adrenergic inhibitor, but not by metyrapone, a corticosterone synthesis blocker. Therefore, we conclude that breast cancers may develop resistance against chemotherapeutic drugs under psychological distress by over-expressing mdr1 via adrenergic stimulation.

Related Organizations
Keywords

ATP Binding Cassette Transporter, Subfamily B, Dose-Response Relationship, Drug, Epinephrine, Paclitaxel, Antineoplastic Agents, Breast Neoplasms, Mice, SCID, Drug Resistance, Multiple, Up-Regulation, Mice, Treatment Outcome, Drug Resistance, Neoplasm, Cell Line, Tumor, Animals, Humans, Female, ATP Binding Cassette Transporter, Subfamily B, Member 1, Stress, Psychological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?