
pmid: 21678080
Competitive binding of Fe(3+), Cr(3+), and Ni(2+) to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M(n+) to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode-optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe(3+) for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe(3+) uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni(2+) loading into Tf. Competitive binding kinetic studies were performed with Fe(3+), Cr(3+), and Ni(2+) to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe(3+) loading increased in the presence of nickel or chromium, with maximal Fe(3+) loading into Tf in all cases reaching approximately 24%. Addition of Cr(3+) to 50% preloaded Fe(3+)-Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe(3+) from Tf, resulting in 7.6 ± 1.3% Cr(3+) loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.
Chromium, Models, Molecular, Nickel, Protein Conformation, Iron, Transferrin, Humans, Binding, Competitive, Protein Binding
Chromium, Models, Molecular, Nickel, Protein Conformation, Iron, Transferrin, Humans, Binding, Competitive, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
