Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM SIGPLAN Noticesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EigenCFA

accelerating flow analysis with GPUs
Authors: Tarun Prabhu; Shreyas Ramalingam; Matthew Might; Mary Hall;
Abstract

We describe, implement and benchmark EigenCFA, an algorithm for accelerating higher-order control-flow analysis (specifically, 0CFA) with a GPU. Ultimately, our program transformations, reductions and optimizations achieve a factor of 72 speedup over an optimized CPU implementation. We began our investigation with the view that GPUs accelerate high-arithmetic, data-parallel computations with a poor tolerance for branching. Taking that perspective to its limit, we reduced Shivers's abstract-interpretive 0CFA to an algorithm synthesized from linear-algebra operations. Central to this reduction were "abstract" Church encodings, and encodings of the syntax tree and abstract domains as vectors and matrices. A straightforward (dense-matrix) implementation of EigenCFA performed slower than a fast CPU implementation. Ultimately, sparse-matrix data structures and operations turned out to be the critical accelerants. Because control-flow graphs are sparse in practice (up to 96% empty), our control-flow matrices are also sparse, giving the sparse matrix operations an overwhelming space and speed advantage. We also achieved speedups by carefully permitting data races. The monotonicity of 0CFA makes it sound to perform analysis operations in parallel, possibly using stale or even partially-updated data.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!