Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Physical Chemistry B
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A First Principles Study on the Structure of Ice-VI: Static Distortion, Molecular Geometry, and Proton Ordering

Authors: Kuo, J. L.; Kuhs, Werner F.;

A First Principles Study on the Structure of Ice-VI: Static Distortion, Molecular Geometry, and Proton Ordering

Abstract

We have studied the structure of ice-VI by examining all ice-rule-allowed structures in its primary unit cell of 10 water molecules with first principles methods. A significant amount of static distortions in the oxygen positions away from their crystallographic positions are found, which is in good agreements with significant higher-order terms in the atomic displacement parameters obtained from X-ray and neutron diffraction data. Structural anomalies (such as exceptionally short OH bonds and small H-O-H angles) noted in conventional crystal structure refinements were not seen in our ab initio calculations, and it is evident that these structural anomalies arose from oversimplified models in which static distortions are not properly accounted for. Our results also show that the molecular geometry of water in ice-VI is similar to but richer than those in ice-Ih and ice-VII. Larger distortions in bond lengths/angles and correlation between the molecular geometry and the neighboring environments were found. Different proton-ordering schemes proposed in the literature were examined, and our calculations provide evidence in favor of a ferroelectric phase of the proton-ordered counterpart of ice-VI at about 80 K.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Green