Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ric-8B Stabilizes the α Subunit of Stimulatory G Protein by Inhibiting Its Ubiquitination

Authors: Yusuke, Nagai; Akiyuki, Nishimura; Kenji, Tago; Norikazu, Mizuno; Hiroshi, Itoh;

Ric-8B Stabilizes the α Subunit of Stimulatory G Protein by Inhibiting Its Ubiquitination

Abstract

The alpha subunit of stimulatory G protein (G alpha(s)) activates adenylyl cyclase, which catalyzes cAMP production, and regulates many physiological aspects, such as cardiac regulation and endocrine systems. Ric-8B (resistance to inhibitors of cholinesterase 8B) has been identified as the G alpha(s)-binding protein; however, its role in G(s) signaling remains obscure. In this study, we present evidence that Ric-8B specifically and positively regulates G(s) signaling by stabilizing the G alpha(s) protein. An in vitro biochemical study suggested that Ric-8B does not possess guanine nucleotide exchange factor activity. However, knockdown of Ric-8B attenuated beta-adrenergic agonist-induced cAMP accumulation, indicating that Ric-8B positively regulates G(s) signaling. Interestingly, overexpression and knockdown of Ric-8B resulted in an increase and a decrease in the G alpha(s) protein, respectively, without affecting the G alpha(s) mRNA level. We found that the G alpha(s) protein is ubiquitinated and that this ubiquitination is inhibited by Ric-8B. This Ric-8B-mediated inhibition of G alpha(s) ubiquitination requires interaction between Ric-8B and G alpha(s) because Ric-8B splicing variants, which are defective for G alpha(s) binding, failed to inhibit the ubiquitination. Taken together, these results suggest that Ric-8B plays a critical and specific role in the control of G alpha(s) protein levels by modulating G alpha(s) ubiquitination and positively regulates G(s) signaling.

Keywords

Ubiquitin, Ubiquitin-Protein Ligases, Ubiquitination, Nuclear Proteins, Cell Line, Protein Structure, Tertiary, Mice, GTP-Binding Proteins, Cyclic AMP, GTP-Binding Protein alpha Subunits, Gs, NIH 3T3 Cells, Animals, Guanine Nucleotide Exchange Factors, Humans, Cycloheximide, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
gold