Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Darrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review D
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2015
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review D
Article . 2015 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 7 versions
addClaim

Post-Newtonian constraints on Lorentz-violating gravity theories with a MOND phenomenology

Authors: Bonetti M; Barausse E;

Post-Newtonian constraints on Lorentz-violating gravity theories with a MOND phenomenology

Abstract

We study the post-Newtonian expansion of a class of Lorentz-violating gravity theories that reduce to khronometric theory (i.e. the infrared limit of Horava gravity) in high-acceleration regimes, and reproduce the phenomenology of the modified Newtonian dynamics (MOND) in the low-acceleration, non-relativistic limit. Like in khronometric theory, Lorentz symmetry is violated in these theories by introducing a dynamical scalar field (the "khronon") whose gradient is enforced to be timelike. As a result, hypersurfaces of constant khronon define a preferred foliation of the spacetime, and the khronon can be thought of as a physical absolute time. The MOND phenomenology arises as a result of the presence, in the action, of terms depending on the acceleration of the congruence orthogonal to the preferred foliation. We find that if the theory is forced to reduce exactly to General Relativity (rather than to khronometric theory) in the high-acceleration regime, the post-Newtonian expansion breaks down at low accelerations, and the theory becomes strongly coupled. Nevertheless, we identify a sizeable region of the parameter space where the post-Newtonian expansion remains perturbative for all accelerations, and the theory passes both solar-system and pulsar gravity tests, besides producing a MOND phenomenology for the rotation curves of galaxies. We illustrate this explicitly with a toy model of a system containing only baryonic matter but no Dark Matter.

17 pages, 2 figures; includes corrections listed in erratum submitted to PRD (i.e. typos corrected in a few equations; results unchanged)

Countries
Italy, Italy, France
Keywords

Modified theories of gravity, 04.50.Kd, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - Astrophysics of Galaxies, General Relativity and Quantum Cosmology, [SDU] Sciences of the Universe [physics], High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), gravitation, Astrophysics of Galaxies (astro-ph.GA), Dark matter, 95.35.+d

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green
bronze