<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Retinol saturase carries out a stereospecific saturation of the C13−C14 double bond of all-trans-retinol to generate (13R)-all-trans-13,14-dihydroretinol. This compound is found in cells expressing mouse or zebrafish retinol saturase and in the livers of mice fed retinyl palmitate. All-trans-13,14-dihydroretinol is oxidized in vivo to all-trans-13,14-dihydroretinoic acid, a highly selective agonist of the retinoic acid receptor. The naturally occurring (13R)-all-trans-13,14-dihydroretinoic acid is a weaker agonist than the (13S) enantiomer, indicating enantioselective recognition by the ligand-binding pocket of this receptor. Consequently the (13S) enantiomer, acting through the retinoic acid receptor, also inhibits adipose differentiation more potently than the (13R) enantiomer.
Oxidoreductases Acting on CH-CH Group Donors, Retinyl Esters, Stereoisomerism, Tretinoin, Zebrafish Proteins, Lipids, Mice, Retinoids, Gene Expression Regulation, Liver, Models, Chemical, Adipocytes, Animals, Diterpenes, Vitamin A, Dimerization, Chromatography, High Pressure Liquid, Zebrafish
Oxidoreductases Acting on CH-CH Group Donors, Retinyl Esters, Stereoisomerism, Tretinoin, Zebrafish Proteins, Lipids, Mice, Retinoids, Gene Expression Regulation, Liver, Models, Chemical, Adipocytes, Animals, Diterpenes, Vitamin A, Dimerization, Chromatography, High Pressure Liquid, Zebrafish
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |