Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Chemical Society
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stereospecificity of Retinol Saturase: Absolute Configuration, Synthesis, and Biological Evaluation of Dihydroretinoids

Authors: Krzysztof Palczewski; Michael Schupp; Alexander R. Moise; Ana G. Cristancho; Philip D. Kiser; Marta Domínguez; R. Alvarez; +3 Authors

Stereospecificity of Retinol Saturase: Absolute Configuration, Synthesis, and Biological Evaluation of Dihydroretinoids

Abstract

Retinol saturase carries out a stereospecific saturation of the C13−C14 double bond of all-trans-retinol to generate (13R)-all-trans-13,14-dihydroretinol. This compound is found in cells expressing mouse or zebrafish retinol saturase and in the livers of mice fed retinyl palmitate. All-trans-13,14-dihydroretinol is oxidized in vivo to all-trans-13,14-dihydroretinoic acid, a highly selective agonist of the retinoic acid receptor. The naturally occurring (13R)-all-trans-13,14-dihydroretinoic acid is a weaker agonist than the (13S) enantiomer, indicating enantioselective recognition by the ligand-binding pocket of this receptor. Consequently the (13S) enantiomer, acting through the retinoic acid receptor, also inhibits adipose differentiation more potently than the (13R) enantiomer.

Keywords

Oxidoreductases Acting on CH-CH Group Donors, Retinyl Esters, Stereoisomerism, Tretinoin, Zebrafish Proteins, Lipids, Mice, Retinoids, Gene Expression Regulation, Liver, Models, Chemical, Adipocytes, Animals, Diterpenes, Vitamin A, Dimerization, Chromatography, High Pressure Liquid, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
bronze