
pmid: 16166256
pmc: PMC1203353
Abstract Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future.
Transcription, Genetic, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Gene Expression Regulation, Developmental, Reproducibility of Results, Reference Standards, Genes, Plant, Plant Roots, Sensitivity and Specificity, Plant Leaves, Gene Expression Regulation, Plant, RNA, Plant, RNA, Messenger, Genome, Plant, Plant Shoots, Oligonucleotide Array Sequence Analysis
Transcription, Genetic, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Gene Expression Regulation, Developmental, Reproducibility of Results, Reference Standards, Genes, Plant, Plant Roots, Sensitivity and Specificity, Plant Leaves, Gene Expression Regulation, Plant, RNA, Plant, RNA, Messenger, Genome, Plant, Plant Shoots, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
