Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Sele...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Selected Topics in Signal Processing
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Synaptic Strength on Propagation of Asynchronous Spikes in Biologically Realistic Feed-Forward Neural Network

Authors: Sayan Faraz; Idir Mellal; Milad Lankarany;

Impact of Synaptic Strength on Propagation of Asynchronous Spikes in Biologically Realistic Feed-Forward Neural Network

Abstract

We consider the problem of reliable information propagation in the brain using biologically realistic models of spiking neurons. Biological neurons use action potentials, or spikes, to encode information. Information can be encoded by the rate of asynchronous spikes or by the (precise) timing of synchronous spikes. Reliable propagation of synchronous spikes is well understood in neuroscience and is relatively easy to implement by biologically-realistic models of neurons. However, reliable propagation of rate-modulated asynchronous spikes is poorly understood and remains difficult to implement by those models. In this paper, we formulate how a multi-layered feedforward neural network (mlFNN) comprising biologically-plausible model neurons enables propagation of time-varying asynchronous spikes. Gradient descent algorithm is developed to estimate the connectivity between neurons (i.e., synaptic weights) in mlFNN. Furthermore, we propose an abstract network model to replicate information propagation in mlFNN with substantially less complexity in estimating synaptic weights. The abstract model has a great implication for neuromorphic computing, as it can be implemented in neuromorphic circuits with less complexity, less energy, and more speed. Simulation results demonstrate that (i) the mlFNN with optimal synapses transmits asynchronous spikes reliably, and (ii) the abstract network model reproduces information propagation performed by mlFNN with high accuracy (coding fraction = 0.97 ± 0.02). We anticipate that this study will facilitate the design and implementation of biologically realistic mlFNN in neuromorphic circuits as well as cross-fertilizations between the fields of neuromorphic engineering, computational neuroscience and artificial intelligence.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!