
Several arginine-containing short peptides have been shown by the patch-clamp method to effectively modulate the NaV1.8 channel activation gating system, which makes them promising candidates for the role of a novel analgesic medicinal substance. As demonstrated by the organotypic tissue culture method, all active and inactive peptides studied do not trigger the downstream signaling cascades controlling neurite outgrowth and should not be expected to evoke adverse side effects on the tissue level upon their medicinal administration. The conformational analysis of Ac-RAR-NH2, Ac-RER-NH2, Ac-RAAR-NH2, Ac-REAR-NH2, Ac-RERR-NH2, Ac-REAAR-NH2, Ac-PRERRA-NH2, and Ac-PRARRA-NH2 has made it possible to find the structural parameter, the value of which is correlated with the target physiological effect of arginine-containing short peptides. The distances between the positively charged guanidinium groups of the arginine side chains involved in intermolecular ligand–receptor ion–ion bonds between the attacking peptide molecules and the NaV1.8 channel molecule should fall within a certain range, the lower threshold of which is estimated to be around 9 Å. The distance values have been calculated to be below 9 Å in the inactive peptide molecules, except for Ac-RER-NH2, and in the range of 9–12 Å in the active peptide molecules.
arginine-containing peptides; Na<sub>V</sub>1.8 channel; patch-clamp method; organotypic cell culture method; conformational analysis; nociception; analgesics, Analgesics, Drug Design, Arginine, Ligands, Peptides, Article, Guanidine, Sodium Channels
arginine-containing peptides; Na<sub>V</sub>1.8 channel; patch-clamp method; organotypic cell culture method; conformational analysis; nociception; analgesics, Analgesics, Drug Design, Arginine, Ligands, Peptides, Article, Guanidine, Sodium Channels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
