Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A domain-agnostic MR reconstruction framework using a randomly weighted neural network

Authors: Arghya Pal; Lipeng Ning; Yogesh Rathi;

A domain-agnostic MR reconstruction framework using a randomly weighted neural network

Abstract

PurposeTo design a randomly-weighted neural network that performs domain-agnostic MR image reconstruction from undersampled k-space data without the need for ground truth or extensive in-vivo training datasets. The network performance must be similar to the current state-of-the-art algorithms that require large training datasets.MethodsWe propose a Weight Agnostic randomly weighted Network method for MRI reconstruction (termed WAN-MRI) which does not require updating the weights of the neural network but rather chooses the most appropriate connections of the network to reconstruct the data from undersampled k-space measurements. The network architecture has three components, i.e. (1) Dimensionality Reduction Layers comprising of 3d convolutions, ReLu, and batch norm; (2) Reshaping Layer is Fully Connected layer; and (3) Upsampling Layers that resembles the ConvDecoder architecture. The proposed methodology is validated on fastMRI knee and brain datasets.ResultsThe proposed method provides a significant boost in performance for structural similarity index measure (SSIM) and root mean squared error (RMSE) scores on fastMRI knee and brain datasets at an undersampling factor of R=4 and R=8 while trained on fractal and natural images, and fine-tuned with only 20 samples from the fastMRI training k-space dataset. Qualitatively, we see that classical methods such as GRAPPA and SENSE fail to capture the subtle details that are clinically relevant. We either outperform or show comparable performance with several existing deep learning techniques (that require extensive training) like GrappaNET, VariationNET, J-MoDL, and RAKI.ConclusionThe proposed algorithm (WAN-MRI) is agnostic to reconstructing images of different body organs or MRI modalities and provides excellent scores in terms of SSIM, PSNR, and RMSE metrics and generalizes better to out-of-distribution examples. The methodology does not require ground truth data and can be trained using very few undersampled multi-coil k-space training samples.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!