Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
Diabetes
Article . 2006 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ZΟ-1 Expression and Phosphorylation in Diabetic Nephropathy

Authors: Hanna E. Abboud; Jian Hua Zhang; Pablo E. Pergola; Kusum Bhandari; Yves Gorin; Jeffrey L. Barnes; Hernan Rincon-Choles; +3 Authors

ZΟ-1 Expression and Phosphorylation in Diabetic Nephropathy

Abstract

Cellular mechanisms responsible for the loss of capillary wall permselectivity in diabetic nephropathy are not well characterized. ZO-1 is a junctional protein involved in the assembly and proper function of a number of tight junctions and is also expressed at the junction of podocytes with the slit diaphragm. We investigated the effect of diabetes and high glucose concentration on the expression of ZO-1 in animal models of both type 1 and 2 diabetes and in rat glomerular epithelial cells. In diabetic animals, immunohistochemistry and Western blotting showed decreased expression of ZO-1 in glomeruli. Immunogold electron microscopy revealed redistribution of ZO-1 from the podocyte membrane to the cytoplasm in the diabetic animals. Exposure of rat glomerular epithelial cells to high glucose resulted in a decrease in the intensity of ZO-1 staining and redistribution of ZO-1 from the membrane to the cytoplasm, changes that are attenuated by blockade of the angiotensin II type 1 receptor. ZO-1 protein expression and serine and tyrosine phosphorylation of ZO-1 were also decreased in cells exposed to high glucose. These findings suggest that alterations in the content and localization of ZO-1 may be relevant to the pathogenesis of proteinuria in diabetes.

Keywords

Blood Glucose, Cytoplasm, Kidney Cortex, Podocytes, Cell Membrane, Membrane Proteins, Phosphoproteins, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Mice, Protein Transport, Proteinuria, Diabetes Mellitus, Type 1, Diabetes Mellitus, Type 2, Zonula Occludens-1 Protein, Animals, Diabetic Nephropathies, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
bronze