Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Salivary Androgen-binding Protein Variation in Mus and Other Rodents

Authors: R C, Karn; S R, Dlouhy;

Salivary Androgen-binding Protein Variation in Mus and Other Rodents

Abstract

We have searched for genetic variation in the expression of salivary androgen-binding protein (ABP) in a wide variety of mice and other rodents. ABP was present in the salivas of mice of all species and subspecies studied. Genetic studies have identified three common variants of the ABP Alpha subunit (Abpaa, Abpab, and Abpac) in Mus musculus populations with distributions that correspond roughly to those of the subspecies studied (domesticus, musculus, and castaneus, respectively). It appears that the ABP a and b polymorphisms conform to the hybrid zone between the domesticus and musculus subspecies characterized by others. Our studies suggest that the presence of Abpab in inbred strains may be due to a M. m. musculus contribution, perhaps via oriental fancy mice bred to European mice in the early lines leading to the common inbred strains. The relatively common occurrence of the ABP a type in other Mus species leads us to conclude that it is the ancestral type in mice. Further, the observation of what amounts to unique alleles in the three different subspecies indicates that microevolution of the protein has occurred. In a broader survey, ABP was also found in the salivas of Murid and Cricetid rodents generally. These findings suggest that ABP has an important functional role in rodent salivas.

Keywords

Male, Genetic Variation, Animals, Wild, Mice, Inbred Strains, Rodentia, Androgen-Binding Protein, Muridae, Mice, Animals, Electrophoresis, Polyacrylamide Gel, Female, Saliva, Alleles, Crosses, Genetic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!