Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 1999 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal and Spatial Analysis of Sin Nombre Virus Quasispecies in Naturally Infected Rodents

Authors: R, Feuer; J D, Boone; D, Netski; S P, Morzunov; S C, St Jeor;

Temporal and Spatial Analysis of Sin Nombre Virus Quasispecies in Naturally Infected Rodents

Abstract

ABSTRACT Sin Nombre virus (SNV) is thought to establish a persistent infection in its natural reservoir, the deer mouse ( Peromyscus maniculatus ), despite a strong host immune response. SNV-specific neutralizing antibodies were routinely detected in deer mice which maintained virus RNA in the blood and lungs. To determine whether viral diversity played a role in SNV persistence and immune escape in deer mice, we measured the prevalence of virus quasispecies in infected rodents over time in a natural setting. Mark-recapture studies provided serial blood samples from naturally infected deer mice, which were sequentially analyzed for SNV diversity. Viral RNA was detected over a period of months in these rodents in the presence of circulating antibodies specific for SNV. Nucleotide and amino acid substitutions were observed in viral clones from all time points analyzed, including changes in the immunodominant domain of glycoprotein 1 and the 3′ small segment noncoding region of the genome. Viral RNA was also detected in seven different organs of sacrificed deer mice. Analysis of organ-specific viral clones revealed major disparities in the level of viral diversity between organs, specifically between the spleen (high diversity) and the lung and liver (low diversity). These results demonstrate the ability of SNV to mutate and generate quasispecies in vivo, which may have implications for viral persistence and possible escape from the host immune system.

Related Organizations
Keywords

Orthohantavirus, Reverse Transcriptase Polymerase Chain Reaction, Hantavirus Infections, Molecular Sequence Data, Genetic Variation, Enzyme-Linked Immunosorbent Assay, Rodentia, Sequence Analysis, DNA, Antibodies, Viral, Rodent Diseases, Mice, Viral Envelope Proteins, Organ Specificity, Mutation, Animals, RNA, Viral, Amino Acid Sequence, Cloning, Molecular, Phylogeny, Disease Reservoirs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
gold