Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification of ATP-binding Cassette Transporter A1 and Associated Binding Proteins Reveals the Importance of β1-Syntrophin in Cholesterol Efflux

Authors: Susan A. Bell; Jennifer J. Manning; Keiichiro Okuhira; David A. Sarracino; Julie L. Goss; Mason W. Freeman; Michael L. Fitzgerald;

Purification of ATP-binding Cassette Transporter A1 and Associated Binding Proteins Reveals the Importance of β1-Syntrophin in Cholesterol Efflux

Abstract

ATP-binding cassette transporter A1 (ABCA1) plays a critical role in HDL cholesterol metabolism, but the mechanism by which it transports lipid across membranes is poorly understood. Because growing evidence implicates accessory proteins in this process, we developed a method by which proteins interacting with the intact transporter could be identified. cDNAs encoding wild-type ABCA1 and a mutant lacking the C-terminal PDZ binding motif of ABCA1 were transfected into 293 cells, and the expressed proteins were solubilized using detergent conditions (0.75% CHAPS, 1 mg/ml phosphatidylcholine) predicted to retain high affinity protein-protein interactions. Proteins that co-purified with ABCA1 on an antibody affinity column were identified by liquid chromatographymass spectrometric analysis. A novel interaction with the PDZ protein beta1-syntrophin was identified using this approach, and this interaction was confirmed in human THP-1 macrophages and in mouse liver. Small interference RNA inhibition of beta1-syntrophin expression reduced cholesterol efflux from primary skin fibroblasts by 50% while decreasing efflux 30% in bone marrow-derived macrophages. Inhibition of beta1-syntrophin decreased ABCA1 protein levels, whereas overexpression of beta1-syntrophin increased ABCA1 cell-surface expression and stimulated efflux to apolipoprotein A-I. These findings indicate that beta1-syntrophin acts through a class-I PDZ interaction with the C terminus of ABCA1 to regulate the cellular distribution and activity of the transporter. The approach used to identify beta1-syntrophin as an ABCA1-binding protein should prove useful in elucidating other protein interactions upon which ABCA1 function depends.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Amino Acid Motifs, Biological Transport, Active, In Vitro Techniques, Transfection, Recombinant Proteins, Cell Line, Mice, Cholesterol, Multiprotein Complexes, Dystrophin-Associated Proteins, Animals, Humans, ATP-Binding Cassette Transporters, Gene Silencing, RNA, Small Interfering, Carrier Proteins, ATP Binding Cassette Transporter 1, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
gold