
Summary: In the Dial-a-Ride problem (DARP), customers request transportation from an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and capacity demand. The aim of DARP is to minimize transportation cost while satisfying customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods.
specialized transportation, Transportation, logistics and supply chain management, Dial-a-Ride, heuristics, Approximation methods and heuristics in mathematical programming
specialized transportation, Transportation, logistics and supply chain management, Dial-a-Ride, heuristics, Approximation methods and heuristics in mathematical programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 150 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
