Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2006 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polysialylated Neural Cell Adhesion Molecule Is Involved in Induction of Long-Term Potentiation and Memory Acquisition and Consolidation in a Fear-Conditioning Paradigm

Authors: Melitta Schachner; Rita Gerardy-Schahn; Birgit Weinhold; Oleg Senkov; Alexander Dityatev; Mu Sun; Mu Sun; +1 Authors

Polysialylated Neural Cell Adhesion Molecule Is Involved in Induction of Long-Term Potentiation and Memory Acquisition and Consolidation in a Fear-Conditioning Paradigm

Abstract

Polysialic acid (PSA) regulates functions of the neural cell adhesion molecule (NCAM) during development and in neuroplasticity in the adult; the underlying mechanisms at different phases of learning and memory consolidation are, however, unknown. To investigate the contributions of PSA versus the extracellular domain of the NCAM glycoprotein backbone to synaptic plasticity, we applied NCAM, PSA-NCAM, and PSA to acute slices of the hippocampal CA1 region of NCAM-deficient mice and measured their effects on long-term potentiation (LTP). Remarkably, only PSA and PSA-NCAM, but not NCAM restored normal LTP. Application of these molecules to the dorsal hippocampus of wild-type mice showed that PSA-NCAM and PSA, but not NCAM, injected before fear conditioning, impaired formation of hippocampus-dependent contextual memory. Consolidation of contextual memory was affected by PSA-NCAM only when injected during its late, but not early phases. None of the tested compounds disturbed extrahippocampal-cued memory. Mice lacking the polysialyltransferase (ST8SialV/PST) responsible for attachment of PSA to NCAM in adulthood showed a mild deficit only in hippocampal contextual learning, when compared with NCAM-deficient mice that were disturbed in both contextual and cued memories. Contextual and tone memory in NCAM-deficient mice could be partially restored by injection of PSA-NCAM, but not of NCAM, into the hippocampus, suggesting that the impact of PSA-NCAM in synaptic plasticity and learning is not mediated by modulation of NCAM–NCAM homophilic interactions. In conclusion, our data support the view that polysialylated NCAM is involved in both formation and late consolidation of contextual memory.

Related Organizations
Keywords

Male, Mice, Knockout, Long-Term Potentiation, Neural Cell Adhesion Molecule L1, Fear, Mice, Inbred C57BL, Mice, Memory, Conditioning, Psychological, Sialic Acids, Animals, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 10%
Top 10%
Top 10%
hybrid