Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology and Evolution
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sex-related genes, directional sexual selection, and speciation

Authors: A, Civetta; R S, Singh;

Sex-related genes, directional sexual selection, and speciation

Abstract

Reproductive isolation and speciation can result from the establishment of either premating or postmating barriers that restrict gene flow between populations. Recent studies of speciation have been dominated by a molecular approach to dissect the genetic basis of hybrid male sterility, a specific form of postmating reproductive isolation. However, relatively little attention has been paid to the evolution of genes involved in premating isolation and genes generally involved in other sex-related functions (e.g., mating behavior, fertilization, spermatogenesis, sex determination). We have assembled DNA sequences from 51 nuclear genes and classified them based on their functional characteristics. The proportion of nonsynonymous to synonymous nucleotide substitutions were compared between Drosophila melanogaster, Drosophila simulans, and Drosophila pseudoobscura, as well as between Caenorhabditis elegans and Caenorhabditis briggsae. We found a high ratio of nonsynonymous to synonymous substitutions for sex-related genes (i.e., genes involved in mating behavior, fertilization, spermatogenesis, or sex determination). The results suggest that directional sexual selection has shaped the evolution of sex-related genes and that these changes have more likely occurred during the early stages of speciation. It is possible that directional selection becomes relaxed after reproductive isolation has been completed between more distantly related species (e.g., D. melanogaster and D. pseudoobscura). However, a saturation in the number of nucleotide substitutions since the time of species separation may mask any sign of directional selection between more distantly related species.

Related Organizations
Keywords

Databases, Factual, Reproduction, Genetic Variation, Sex Determination Processes, Biological Evolution, Evolution, Molecular, Sexual Behavior, Animal, Drosophila melanogaster, Genes, Caenorhabditis, Animals, Drosophila, Selection, Genetic, Caenorhabditis elegans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 10%
Top 10%
Top 1%
gold