Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review of Open Source Software Tools for Time Series Analysis

Authors: Yunus Parvej Faniband; Iskandar Ishak; Sadiq M. Sait;

A Review of Open Source Software Tools for Time Series Analysis

Abstract

Time series data is used in a wide range of real world applications. In a variety of domains , detailed analysis of time series data (via Forecasting and Anomaly Detection) leads to a better understanding of how events associated with a specific time instance behave. Time Series Analysis (TSA) is commonly performed with plots and traditional models. Machine Learning (ML) approaches , on the other hand , have seen an increase in the state of the art for Forecasting and Anomaly Detection because they provide comparable results when time and data constraints are met. A number of time series toolboxes are available that offer rich interfaces to specific model classes (ARIMA/filters , neural networks) or framework interfaces to isolated time series modelling tasks (forecasting , feature extraction , annotation , classification). Nonetheless , open source machine learning capabilities for time series remain limited , and existing libraries are frequently incompatible with one another. The goal of this paper is to provide a concise and user friendly overview of the most important open source tools for time series analysis. This article examines two related toolboxes (1) forecasting and (2) anomaly detection. This paper describes a typical Time Series Analysis (TSA) framework with an architecture and lists the main features of TSA framework. The tools are categorized based on the criteria of analysis tasks completed , data preparation methods employed , and evaluation methods for results generated. This paper presents quantitative analysis and discusses the current state of actively developed open source Time Series Analysis frameworks. Overall , this article considered 60 time series analysis tools , and 32 of which provided forecasting modules , and 21 packages included anomaly detection.

21 Pages, 2 Figures

Keywords

I.2, FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), I.2.5, I.2; I.2.5, Computer Science - Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green