Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Navigatio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Navigation
Article . 2012 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

A Fast Multidimensional Scaling Filter for Vehicular Cooperative Positioning

Authors: Mahmoud Efatmaneshnik; Nima Alam; Allison Kealy; Andrew G Dempster;

A Fast Multidimensional Scaling Filter for Vehicular Cooperative Positioning

Abstract

Vehicular communication technologies are becoming staples of modern societies. This paper proposes a new positioning algorithm for vehicular networks. The algorithm is a non-classic Multi-Dimensional Scaling Filter (MDSF) that builds on a novel and computationally effective Multi-Dimensional Scaling (MDS) solution covariance estimation technique and also a Maximum Likelihood (ML) filter. In general a major drawback of the non-classic MDS is the high computational cost because of its iterative nature. It is shown that a special blend between vehicular Map-Matching (MM) and MDSF considerably reduces the number of iterations and the convergence time, making the MDSF a suitable algorithm for vehicular network positioning. The performance of MDSF is compared with that of an Extended Kalman Filter (EKF) together with the Cramar Rao Lower Bound (CRLB). It is shown through simulation that for all types of traffic conditions MDSF performs better than EKF and closer to CRLB than EKF. It is also shown that both MDSF and EKF algorithms are robust to typical Global Positioning System (GPS) outages in deep urban canyons. CRLB also proves that Cooperative Positioning (CP) in general has the ability to bridge short GPS outages.

Country
Australia
Related Organizations
Keywords

Engineering, DRSC, cooperative positioning, Oceanography, Engineering, Marine, map-matching

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!