
We discuss a method for systematically correcting results obtained using variational expressions in scattering theory. The approach taken is to compute a sequence of Pade approximants of the form [N/N] for the error in an initial variational estimate obtained using a basis-set expansion. The relationship between the Pade-approximant approach and the iterative Schwinger method for correcting variational estimates is also examined. We discuss a large class of general variational expressions to which the Pade-approximant approach can be applied. The variational expressions considered include those for the wave function, for photoionization transition matrix elements, as well as for scattering matrix (K-matrix) elements. We have applied this approach to the 5σ photoionization of CO using the frozen-core Hartree-Fock and fixed-nuclei approximations. We find that the Pade-approximant method converges rapidly and reliably. Both total photoionization cross sections and photoelectron angular distributions from threshold to 40 eV are presented and compared to previous experimental and theoretical results. We find major quantitative discrepancies between the present results for the total cross section and previous theoretical results.
530
530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
