Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Methods
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1101/2022.0...
Article . 2022 . Peer-reviewed
Data sources: Crossref
Nature Methods
Article . 2024
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

scPerturb: Harmonized Single-Cell Perturbation Data

Authors: Stefan Peidli; Tessa D. Green; Ciyue Shen; Torsten Gross; Joseph Min; Samuele Garda; Bo Yuan; +6 Authors

scPerturb: Harmonized Single-Cell Perturbation Data

Abstract

AbstractRecent biotechnological advances led to growing numbers of single-cell perturbation studies, which reveal molecular and phenotypic responses to large numbers of perturbations. However, analysis across diverse datasets is typically hampered by differences in format, naming conventions, and data filtering. In order to facilitate development and benchmarking of computational methods in systems biology, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform pre-processing and quality control pipelines and harmonize feature annotations. The resulting information resource enables efficient development and testing of computational analysis methods, and facilitates direct comparison and integration across datasets. In addition, we introduce E-statistics for perturbation effect quantification and significance testing, and demonstrate E-distance as a general distance measure for single cell data. Using these datasets, we illustrate the application of E-statistics for quantifying perturbation similarity and efficacy. The data and a package for computing E-statistics is publicly available at scperturb.org. This work provides an information resource and guide for researchers working with single-cell perturbation data, highlights conceptual considerations for new experiments, and makes concrete recommendations for optimal cell counts and read depth.

Keywords

Proteomics, Epigenomics, Gene Expression Profiling, Single-Cell Analysis, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?