Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

p204 Is Required for the Differentiation of P19 Murine Embryonal Carcinoma Cells to Beating Cardiac Myocytes

Authors: Reed Hickey; Weihua Kong; Jin Yu; Bo Ding; Chuan-ju Liu; Yan Huang; Peter Lengyel;

p204 Is Required for the Differentiation of P19 Murine Embryonal Carcinoma Cells to Beating Cardiac Myocytes

Abstract

Among 10 adult mouse tissues tested, the p204 protein levels were highest in heart and skeletal muscle. We described previously that the MyoD-inducible p204 protein is required for the differentiation of cultured murine C2C12 skeletal muscle myoblasts to myotubes. Here we report that p204 was also required for the differentiation of cultured P19 murine embryonal carcinoma stem cells to beating cardiac myocytes. As shown by others, this process can be triggered by dimethyl sulfoxide (DMSO). We established that DMSO induced the formation of 204RNA and p204. Ectopic p204 could partially substitute for DMSO in inducing differentiation, whereas ectopic 204 antisense RNA inhibited the differentiation. Experiments with reporter constructs, including regulatory regions from the Ifi204 gene (encoding p204) in P19 cells and in cultured newborn rat cardiac myocytes, as well as chromatin coimmunoprecipitations with transcription factors, revealed that p204 expression was synergistically transactivated by the cardiac Gata4, Nkx2.5, and Tbx5 transcription factors. Furthermore, ectopic p204 triggered the expression of Gata4 and Nkx2.5 in P19 cells. p204 contains a nuclear export signal and was partially translocated to the cytoplasm during the differentiation. p204 from which the nuclear export signal was deleted was not translocated, and it did not induce differentiation. The various mechanisms by which p204 promoted the differentiation are reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14893-14906).

Related Organizations
Keywords

Homeodomain Proteins, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Nuclear Proteins, Phosphoproteins, Chromatin, GATA4 Transcription Factor, Mice, Cell Line, Tumor, Homeobox Protein Nkx-2.5, Animals, Myocytes, Cardiac, Amino Acid Sequence, Muscle, Skeletal, T-Box Domain Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Average
Top 10%
gold