Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/sc4140...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LightSeq2: Accelerated Training for Transformer-Based Models on GPUs

Authors: Xiaohui Wang; Yang Wei; Ying Xiong; Guyue Huang; Xian Qian; Yufei Ding 0001; Mingxuan Wang; +1 Authors

LightSeq2: Accelerated Training for Transformer-Based Models on GPUs

Abstract

Transformer-based neural models are used in many AI applications. Training these models is expensive, as it takes huge GPU resources and long duration. It is challenging because typical data like sentences have variable lengths, and Transformer's computation patterns are more complex than convolutional neural networks. Existing systems either only focus on model inference or optimization for only BERT-like encoder models. In this paper, we present LightSeq2, a system to accelerate training for a general family of Transformer models on GPUs. We propose a series of GPU optimization techniques tailored to the specific computation flow and memory access patterns of Transformer models. LightSeq2 supports many model architectures, including BERT (encoder-only), GPT (decoder-only), Transformer (encoder-decoder), and vision Transformer. Our experiments for a variety of models and benchmarks show that LightSeq2 is consistently faster (1.4-3.5x) than previous systems on different GPUs. In particular, it gains 308% training speedup compared with existing systems on a large public machine translation benchmark (WMT14 English-German).

13 pages, 22 figures, accepted by SC 22

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computation and Language, Computer Science - Mathematical Software, Computation and Language (cs.CL), Mathematical Software (cs.MS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green