Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Chemical...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Chemical Engineering
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.1184/r1/...
Other literature type . 2009
Data sources: Datacite
https://dx.doi.org/10.1184/r1/...
Other literature type . 2009
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dinkelbach's algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems

Authors: Fengqi You; Pedro M. Castro; Ignacio E. Grossmann;

Dinkelbach's algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems

Abstract

In this paper we consider the solution methods for mixed-integer linear fractional programming (MILFP) models, which arise in cyclic process scheduling problems. We first discuss convexity properties of MILFP problems, and then investigate the capability of solving MILFP problems with MINLP methods. Dinkelbach’s algorithm is introduced as an efficient method for solving large scale MILFP problems for which its optimality and convergence properties are established. Extensive computational examples are presented to compare Dinkelbach’s algorithm with various MINLP methods. To illustrate the applications of this algorithm, we consider industrial cyclic scheduling problems for a reaction-separation network and a tissue paper mill with byproduct recycling. These problems are formulated as MILFP models based on a continuous time Resource-Task Network (RTN). The results show that orders of magnitude reduction in CPU times can be achieved when using this algorithm compared to solving the problems with commercial MINLP solvers.

Related Organizations
Keywords

90499 Chemical Engineering not elsewhere classified, FOS: Chemical engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!