Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Upregulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria

Authors: S, Daibo; M T, Kimura; S G, Goto;

Upregulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria

Abstract

Diapause-associated gene expression was studied in Drosophila triauraria using subtractive hybridization. Two genes that were shown to be upregulated in diapausing flies by Northern hybridization have similarity to genes encoding antifungal peptides of Drosophila melanogaster, members of the drosomycin family (drosomycin, CG10812, CG10813, CG10815 and CG11520). In addition, a signal peptide and Knot 1 domain are shared with them. The genes cloned from D. triauraria are tentatively named drosomycin-like. However, the similarities between drosomycin-like in D. triauraria and the members of the drosomycin family in D. melanogaster are quite lower than those between other homologous genes in these species. In addition, neighbor-joining analysis revealed that drosomycin-like in D. triauraria is not closely related to known members of the family in D. melanogaster. Thus, it is most plausible that drosomycin-like is not a D. triauraria counterpart of known members of the family, but a novel member belonging to the family. The drosomycin-like gene is expected to have a few copies, because at least two sequences having unique 3'-ends were obtained in RACE, and multiple bands were observed in Southern hybridization. However, these sequences from RACE had the same ORF. Probes for genes encoding additional antimicrobial peptides were used to evaluate expression during diapause. Like drosomycin-like, drosomycin was upregulated during diapause, but defensin and drosocin were not.

Keywords

DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Glycopeptides, Gene Expression Regulation, Developmental, DNA, Sequence Analysis, DNA, Blotting, Northern, Defensins, Blotting, Southern, Sequence Homology, Nucleic Acid, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!