Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring magmatic gas and subvolcanic hydrothermal system interactions: Mineralogy and sulfur isotope characteristics of the Holocene volcanic products at Mt. Tangkuban Parahu, Indonesia.

Authors: Syahreza Saidina Angkasa; Ohba Tsukasa; Imura Takumi; Pearlyn Manalo; Takahashi Ryohei;

Exploring magmatic gas and subvolcanic hydrothermal system interactions: Mineralogy and sulfur isotope characteristics of the Holocene volcanic products at Mt. Tangkuban Parahu, Indonesia.

Abstract

Abstract A subvolcanic-hydrothermal system involves complex interaction between magma, magmatic fluids, and hydrothermal system at stratovolcanoes in subduction setting. These interactions are responsible for magmatic-hydrothermal eruption associated with rapid injection of magmatic gas into hydrothermal system at a certain depth of volcanic edifice. However, capturing these interactions is challenging due to inaccessibility to the crater conduit within the edifice. Therefore, we selected a method to analyze the volcanic products from several episodic phreatic and phreatomagmatic eruptions during the Holocene at Tangkuban Parahu, Indonesia. In this context, Holocene volcanic products are one of the best examples to understand an interplay between magma, magmatic fluids, and hydrothermal system in producing violent eruptions. In this study, we carried out petrological and sulfur isotope analysis only for the hydrothermally altered lithic ash particles, a part of proximal volcanic products. Mineral assemblages mostly exhibit a typical acid-sulfate and advanced argillic alteration, consisting of alunite, kaolinite, and silica minerals. Acid-sulfate and advanced argillic alteration indicates that those mineral assemblages were formed under the formation temperature ranging from ~100 to ~260 . The calculated temperature from sulfur isotopic fractionation of sulfate-sulfide shows 230-240 , which is almost identical with assigned temperature from mineral assemblages. Sulfur isotope and jarosite occurrence indicate the supergene alteration associated with oxygen entrainment to the hydrothermal system that oxidize pyrite to jarosite. Sulfur isotopic variation throughout the studied stratigraphy represents influx of magmatic gas to the hydrothermal system. Moreover, zoned P-bearing alunite represents repetitive injection of magmatic gas to the active acidic hydrothermal system, which also indicates the magmatic-hydrothermal interaction below the crater. Occurrence of enargite and chalcopyrite represents the nature of upper-level high sulfidation system at shallow volcanic edifice of the Tangkuban Parahu volcano. Furthermore, we showed that coupled petrological and sulfur isotope analysis has paramount importance to evaluate the conditions of the subvolcanic hydrothermal system, magmatic-hydrothermal interaction, and the origin of steam-blast eruptions at volcanoes that contain subvolcanic-hydrothermal systems.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid