
An increasing number of Analytics-as-a-Service solutions has recently seen the light, in the landscape of cloud-based services. These services allow flexible composition of compute and storage components, that create powerful data ingestion and processing pipelines. This work is a first attempt at an experimental evaluation of analytic application performance executed using a wide range of storage service configurations. We present an intuitive notion of data locality, that we use as a proxy to rank different service compositions in terms of expected performance. Through an empirical analysis, we dissect the performance achieved by analytic workloads and unveil problems due to the impedance mismatch that arise in some configurations. Our work paves the way to a better understanding of modern cloud-based analytic services and their performance, both for its end-users and their providers.
Longer version of the paper in Submission at IEEE CLOUD'16
storage, FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), performance evaluation
storage, FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), performance evaluation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
