Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Reports
Article
Data sources: UnpayWall
Oncology Reports
Article . 2014 . Peer-reviewed
Data sources: Crossref
Oncology Reports
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

shRNA targeting Bmi-1 sensitizes CD44+ nasopharyngeal cancer stem-like cells to radiotherapy

Authors: Jinghua Ren; Ming‑Qian Lu; Jin Su; Fang Yi; Xiao-Yan Liu; Daojun Li; Qiao Huang; +2 Authors

shRNA targeting Bmi-1 sensitizes CD44+ nasopharyngeal cancer stem-like cells to radiotherapy

Abstract

Accumulating evidence indicates that cancer stem cells (CSCs) are involved in resistance to radiation therapy (RT). Bmi-1, a member of the Polycomb family of transcriptional repressors, is essential for maintaining the self-renewal abilities of stem cells and overexpression of Bmi-1 correlates with cancer therapy failure. Our previous study identified that the CD44+ nasopharyngeal cancer (NPC) cells may be assumed as one of markers of nasopharyngeal carcinoma cancer stem cell-like cells (CSC-LCs) and Bmi-1 is overexpressed in CD44+ NPC. In the present study, we used RNA interference technology to knock down the expression of Bmi-1 in CD44+ NPC cells, and then measured the radiation response by clonogenic cell survival assay. DNA repair was monitored by γH2AX foci formation. Bmi-1 downstream relative gene and protein expression of p16, p14, p53 were assessed by western blotting and real-time PCR. Cell cycle and apoptosis were detected by flow cytometry assays. We found that Bmi-1 knockdown prolonged G1 and enhanced the radiation-induced G2/M arrest, inhibited DNA damage repair, elevated protein p16, p14 and p53 expression, leading to increased apoptosis in the radiated CD44+ cells. These data suggest that Bmi-1 downregulation increases the radiosensitivity to CD44+ NPC CSC-LCs. Bmi-1 is a potential target for increasing the sensitivity of NPC CSCs to radiotherapy.

Related Organizations
Keywords

Polycomb Repressive Complex 1, Apoptosis, Nasopharyngeal Neoplasms, Gene Expression Regulation, Neoplastic, Histones, Hyaluronan Receptors, Cell Line, Tumor, Gene Knockdown Techniques, Neoplastic Stem Cells, Humans, RNA, Small Interfering, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
bronze
Related to Research communities
Cancer Research